How acids behave in interstellar space

How acids behave in interstellar space

NEWS HIGHLIGHT: Acids in water release protons, but how do they behave in interstellar space?

PATHWAYS FOR WOMEN IN STEM

PATHWAYS FOR WOMEN IN STEM

How it went: The MUST/RESOLV gender and science meeting (9-10 September 2019).

RUHR EXPLORES SOLVATION SCIENCE

RUHR EXPLORES SOLVATION SCIENCE

We shape a new scientific discipline, inspire the scientists of tomorrow, and enable future technologies

WE ARE RESOLV

WE ARE RESOLV

Over 200 scientists from about 50 research groups in 6 institutions

ZEMOS: Home of Solvation Science @RUB

ZEMOS: Home of Solvation Science @RUB

The first research building for Solvation Science in the world. Hosts over 100 scientists, it's home to 6 disciplines.

WHAT is RESOLV?

The Cluster of Excellence RESOLV is an interdisciplinary research project of the Ruhr University Bochum and the TU Dortmund University, as well as four other institutions in the German Ruhr area. Since 2012, about 200 scientists cooperate to clarify how the solvent is involved in the control, mediation and regulation of chemical reactions. Our research is essential to advance technologies that could reuse CO2 for chemicals production, increase the efficiency of energy conversion and storage and develop smart sensors. RESOLV is funded by the German Federal Government and the state of North Rhine-Westphalia with 42 Mio. EUR over the period 2019-2025. 

Find out more

Quick links

FACTS &
FIGURES

GRADUATE
SCHOOL

GENDER
EQUALITY

International
network

TECHNOLOGY
TRANSFER

Latest News or browse all

Posted on
Jacqueline Thiemann and Marc Nowaczyk are interested in protein complexes in cyanobacteria, which they keep in large tanks at RUB. © RUB, Marquard

Structure and function of photosynthesis protein explained in detail

Science: Photosynthetic complex I is a key element in photosynthetic electron transport, but little has been known about it so far.

An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I. This membrane protein complex plays a major role in dynamically rewiring photosynthesis. “The results close one of the last major gaps in our understanding of photosynthetic electron transport pathways,” says Associate Professor Dr. Marc Nowaczyk, who heads the Bochum project group “Cyanobacterial Membrane Protein Complexes”. Together with his colleagues from the Max Planck Institute for Biochemistry, Osaka University and other collaboration partners, he reports the work in the renowned journal “Science”, published online on 20 December 2018.

Involved in two processes

Complex I is found in most living organisms. In plant cells it is used in two places: one is in mitochondria, the cell’s power plants, the other is in chloroplasts, where photosynthesis occurs. The structure and function of mitochondrial complex I as part of cellular respiration has been well investigated, whereas photosynthetic complex I has been little studied so far.

Highly efficient electron transport

Using cryoelectron microscopy, the researchers were able to solve for the first time the molecular structure of photosynthetic complex I. Additionally, they gained new insights into the function of the protein complex.

“This enabled us to bring the structure together with the function of the photosynthetic complex I and gain a detailed insight into the molecular basis of electron transport processes,” summarises Marc Nowaczyk. “In the future, we plan to use this knowledge to create artificial electron transport chains that will enable new applications in the field of synthetic biology.”

ADDITIONAL INFORMATION

Original Publication: J. M. Schuller et al.: Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer, in: Science, 2018, DOI: 10.1126/science.aau3613

Press Release from RUB

 

Posted on
Jacqueline Thiemann and Marc Nowaczyk are interested in protein complexes in cyanobacteria, which they keep in large tanks at RUB. © RUB, Marquard

Structure and function of photosynthesis protein explained in detail

Science: Photosynthetic complex I is a key element in photosynthetic electron transport, but little has been known about it so far.

An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I. This membrane protein complex plays a major role in dynamically rewiring photosynthesis. “The results close one of the last major gaps in our understanding of photosynthetic electron transport pathways,” says Associate Professor Dr. Marc Nowaczyk, who heads the Bochum project group “Cyanobacterial Membrane Protein Complexes”. Together with his colleagues from the Max Planck Institute for Biochemistry, Osaka University and other collaboration partners, he reports the work in the renowned journal “Science”, published online on 20 December 2018.

Involved in two processes

Complex I is found in most living organisms. In plant cells it is used in two places: one is in mitochondria, the cell’s power plants, the other is in chloroplasts, where photosynthesis occurs. The structure and function of mitochondrial complex I as part of cellular respiration has been well investigated, whereas photosynthetic complex I has been little studied so far.

Highly efficient electron transport

Using cryoelectron microscopy, the researchers were able to solve for the first time the molecular structure of photosynthetic complex I. Additionally, they gained new insights into the function of the protein complex.

“This enabled us to bring the structure together with the function of the photosynthetic complex I and gain a detailed insight into the molecular basis of electron transport processes,” summarises Marc Nowaczyk. “In the future, we plan to use this knowledge to create artificial electron transport chains that will enable new applications in the field of synthetic biology.”

ADDITIONAL INFORMATION

Original Publication: J. M. Schuller et al.: Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer, in: Science, 2018, DOI: 10.1126/science.aau3613

Press Release from RUB

 

Our scientific fields

Research Area I

Local Solvent Fluctuations in Heterogeneous Systems

 

Read more

Research Area II

Solvent Control of Chemical Dynamics and Reactivity

 

Read more

Research Area III

Solvation under Extreme Conditions

 

Read more

Video: The solvent of life

Water. It’s the most abundant substance on Earth´s surface and in our bodies. But is water a passive spectator in the animated scene of bio-chemical reactions inside our cells? RESOLV scientists investigate the important role that water plays in the most diverse processes, bringing solvation science into the spotlight.

More videos from RESOLV 

Upcoming Events or browse all

Posted on
Jacqueline Thiemann and Marc Nowaczyk are interested in protein complexes in cyanobacteria, which they keep in large tanks at RUB. © RUB, Marquard

Structure and function of photosynthesis protein explained in detail

Science: Photosynthetic complex I is a key element in photosynthetic electron transport, but little has been known about it so far.

An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I. This membrane protein complex plays a major role in dynamically rewiring photosynthesis. “The results close one of the last major gaps in our understanding of photosynthetic electron transport pathways,” says Associate Professor Dr. Marc Nowaczyk, who heads the Bochum project group “Cyanobacterial Membrane Protein Complexes”. Together with his colleagues from the Max Planck Institute for Biochemistry, Osaka University and other collaboration partners, he reports the work in the renowned journal “Science”, published online on 20 December 2018.

Involved in two processes

Complex I is found in most living organisms. In plant cells it is used in two places: one is in mitochondria, the cell’s power plants, the other is in chloroplasts, where photosynthesis occurs. The structure and function of mitochondrial complex I as part of cellular respiration has been well investigated, whereas photosynthetic complex I has been little studied so far.

Highly efficient electron transport

Using cryoelectron microscopy, the researchers were able to solve for the first time the molecular structure of photosynthetic complex I. Additionally, they gained new insights into the function of the protein complex.

“This enabled us to bring the structure together with the function of the photosynthetic complex I and gain a detailed insight into the molecular basis of electron transport processes,” summarises Marc Nowaczyk. “In the future, we plan to use this knowledge to create artificial electron transport chains that will enable new applications in the field of synthetic biology.”

ADDITIONAL INFORMATION

Original Publication: J. M. Schuller et al.: Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer, in: Science, 2018, DOI: 10.1126/science.aau3613

Press Release from RUB

 

igss summer school

The integrated Graduate School Solvation Science hosts an annual Summer School at the Ruhr University Bochum. The school always takes place during Whitsuntide and is an integral part of the GSS students' training during their doctoral studies. This year's iGSS Summer School took place from the 11th to the 14th of June, 2019.

International speakers, suggested by the students themselves, are invited to give keynote talks on their research in the field of Solvation Science. The Advanced Laboratory Modules give the students an excellent opportunity to learn new and interesting experimental and theoretical techniques within a specific research topic of their own choice. 

Find out more

Publications highlight

K Lucht, D Loose, M Ruschmeier, V Strotkötter, G Dyker, K Morgenstern
Hydrophilicity and Microsolvation of an Organic Molecule Resolved on the Submolecular Level by Scanning Tunneling Microscopy, Angew. Chem. 57 (2018), 1266, DOI: 10.1002/anie.201711062

N Tsuji, JL Kennemur, T Buyck, S Lee, S Prévost, PSJ Kaib, D Bykov, C Farès, B List
Activation of olefins via asymmetric Brøsted acid, Science 359 (2018), 1501, DOI: 10.1126/science.aaq0445

D Muñoz-santiburcio, M Farnesi Camellone, D Marx
Solvation-Induced Changes in the Mechanism of Alcohol Oxidation at Gold/Titania Nanocatalysts in the Aqueous Phase versus Gas Phase, Angew. Chem. 57 (2018), 3327, DOI: 10.1002/anie.201710791

KF Pfister, S Baader, M Baader, S Berndt, LJ Goossen
Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary dieses engines, Science Advances  3 (2017),  e1602624, DOI: 10.1126/sciadv.1602624

C Schuabb, N Kumar, S Pataraia, D Marx, R Winter
Pressure modulates the self-cleavage step of the hairpin ribozyme, Nature Communications 8 (2017), 14661, DOI: 10.1038/ncomms14661

 

find out more