RUHR EXPLORES SOLVATION SCIENCE

RUHR EXPLORES SOLVATION SCIENCE

We shape a new scientific discipline, inspire the scientists of tomorrow, and enable future technologies

WE ARE RESOLV

WE ARE RESOLV

Over 200 scientists from about 50 research groups in 7 institutions

ZEMOS: Home of Solvation Science @RUB

ZEMOS: Home of Solvation Science @RUB

The first research building for Solvation Science in the world. Hosts over 100 scientists, it's home to 6 disciplines.

WHAT is RESOLV?

The Cluster of Excellence RESOLV is a joint research project of about fifty research groups from seven institutions in the German Ruhr area. Since 2012, we use cutting-edge experimental and computational techniques to understand the role of solvents at the molecular detail in the most diverse chemical processes. For example, we investigate the influence of water in vital biological processes as well as the effects of solvents on synthesis and catalytic reactions. Our research lays the foundations for major advances in key green and medical technologies. RESOLV is funded with 28 Mio. EUR by the German Research Foundation (DFG).

Find out more

Quick links

FACTS &
FIGURES

GRADUATE
SCHOOL

TECHNOLOGY
TRANSFER

International
network

GENDER
EQUALITY

Latest News or browse all

Posted on

RESOLV chemists map water behaviour around alcohol molecules

THz Calorimetry could allow a better understanding of biomolecular processes

 

Prof. Dr. Martina Havenith and her group at the Department of Physical Chemistry II at RUB have developed a new method to map the calorimetric properties of water molecules surrounding alcohol molecules. The brand-new technology, THz calorimetry, can access energy and structural changes of the water molecules that surround dissolved molecules, explain the scientists in a newly published paper in Angewandte Chemie. The scientists’ long term aim is to apply a similar approach to bigger molecules, like proteins or enzymes, and to investigate the interplay between these biomolecules and water, a knowledge that could be used for drug design. 

“This publication is the first realization of the ideas we have presented in the ERC Advanced Grant. We have proven that a THz calorimetry can be developed“, says RESOLV speaker Martina Havenith. The pan-European funding body ERC (European Research Council) has recently financed the team of Prof Havenith with 2.5 million Euros in five years to develop the new technique. 

The underestimated role of water in biology

Fundamental biological processes like protein folding, protein-protein interactions and enzymatic reactions take place in watery solutions and depend upon the ability of the reacting molecules to recognise themselves in a solvent. Molecular recognition is mediated through various chemical interactions that can be studied by calorimetry, measuring enthalpy (heat transfer), entropy (a measures of disorder for a system) and other associated energetic parameters. 

Unfortunately, current calorimetric approaches are all based on heat transfer, hence they analyse macroscopic changes on time scales of 1 to 100 seconds and can do that only at equilibrium, i.e. when molecules are already bound. However, as Havenith points out, a successful reaction is the result of a dynamic interplay between the partner molecules and the solvent. The Angewandte research now shows that THz-Calorimetry can yield calorimetric data locally and in real time. 

THz laser spectroscopy passes the test

Every solute immersed in water perturbs the H-bonding structure of water molecules in its proximity (the so-called hydration shell), which is therefore different from bulk water. It is known that, depending on the immersed molecule’s size and form, surrounding water molecules could form a water cage with tetrahedral structure, or a more disordered structure with weak hydrogen bonds (called interstitial water).

In the Angewandte paper, the RUB scientists analysed a series of five alcohols (from methanol to tert-butanol) in water. They showed that, upon changing the temperature, THz spectra can be used to infer the changes in the more or less structured hydration water, since the two types leave a distinctive signature on the low frequency spectrum around 200 cm-1. Moreover, these local changes can be directly correlated with thermodynamic data: “The new method allows us for the first time to directly extract from THz spectroscopic data parameters like entropy and enthalpy around solutes, which are crucial to characterize molecular recognition”, says Havenith. 

As a final test, the scientists compared the temperature-dependent changes in heat capacity taken from literature data with the same values deduced by THz-calorimetry data, finding a one-to-one quantitative agreement. A future step of the research will be to apply the novel methodology to processes under non-equilibrium conditions.

Original publication on Angewandte Chemie International Edition  

Posted on

RESOLV chemists map water behaviour around alcohol molecules

THz Calorimetry could allow a better understanding of biomolecular processes

 

Prof. Dr. Martina Havenith and her group at the Department of Physical Chemistry II at RUB have developed a new method to map the calorimetric properties of water molecules surrounding alcohol molecules. The brand-new technology, THz calorimetry, can access energy and structural changes of the water molecules that surround dissolved molecules, explain the scientists in a newly published paper in Angewandte Chemie. The scientists’ long term aim is to apply a similar approach to bigger molecules, like proteins or enzymes, and to investigate the interplay between these biomolecules and water, a knowledge that could be used for drug design. 

“This publication is the first realization of the ideas we have presented in the ERC Advanced Grant. We have proven that a THz calorimetry can be developed“, says RESOLV speaker Martina Havenith. The pan-European funding body ERC (European Research Council) has recently financed the team of Prof Havenith with 2.5 million Euros in five years to develop the new technique. 

The underestimated role of water in biology

Fundamental biological processes like protein folding, protein-protein interactions and enzymatic reactions take place in watery solutions and depend upon the ability of the reacting molecules to recognise themselves in a solvent. Molecular recognition is mediated through various chemical interactions that can be studied by calorimetry, measuring enthalpy (heat transfer), entropy (a measures of disorder for a system) and other associated energetic parameters. 

Unfortunately, current calorimetric approaches are all based on heat transfer, hence they analyse macroscopic changes on time scales of 1 to 100 seconds and can do that only at equilibrium, i.e. when molecules are already bound. However, as Havenith points out, a successful reaction is the result of a dynamic interplay between the partner molecules and the solvent. The Angewandte research now shows that THz-Calorimetry can yield calorimetric data locally and in real time. 

THz laser spectroscopy passes the test

Every solute immersed in water perturbs the H-bonding structure of water molecules in its proximity (the so-called hydration shell), which is therefore different from bulk water. It is known that, depending on the immersed molecule’s size and form, surrounding water molecules could form a water cage with tetrahedral structure, or a more disordered structure with weak hydrogen bonds (called interstitial water).

In the Angewandte paper, the RUB scientists analysed a series of five alcohols (from methanol to tert-butanol) in water. They showed that, upon changing the temperature, THz spectra can be used to infer the changes in the more or less structured hydration water, since the two types leave a distinctive signature on the low frequency spectrum around 200 cm-1. Moreover, these local changes can be directly correlated with thermodynamic data: “The new method allows us for the first time to directly extract from THz spectroscopic data parameters like entropy and enthalpy around solutes, which are crucial to characterize molecular recognition”, says Havenith. 

As a final test, the scientists compared the temperature-dependent changes in heat capacity taken from literature data with the same values deduced by THz-calorimetry data, finding a one-to-one quantitative agreement. A future step of the research will be to apply the novel methodology to processes under non-equilibrium conditions.

Original publication on Angewandte Chemie International Edition  

Our scientific fields

Research Area A

Understanding and Exploiting Solvation in Chemical Processes

 

Read more

Research Area B

Connecting Solvation Dynamics with Biomolecular Function

 

Read more

Research Area C

Ion Solvation
and Charge Transfer at Interfaces

 

Read more

Video: The solvent of life

Water. It’s the most abundant substance on Earth´s surface and in our bodies. But is water a passive spectator in the animated scene of bio-chemical reactions inside our cells? RESOLV scientists investigate the important role that water plays in the most diverse processes, bringing solvation science into the spotlight.

More videos from RESOLV 

Recent Events or browse all

Upcoming Events

Posted on

RESOLV chemists map water behaviour around alcohol molecules

THz Calorimetry could allow a better understanding of biomolecular processes

 

Prof. Dr. Martina Havenith and her group at the Department of Physical Chemistry II at RUB have developed a new method to map the calorimetric properties of water molecules surrounding alcohol molecules. The brand-new technology, THz calorimetry, can access energy and structural changes of the water molecules that surround dissolved molecules, explain the scientists in a newly published paper in Angewandte Chemie. The scientists’ long term aim is to apply a similar approach to bigger molecules, like proteins or enzymes, and to investigate the interplay between these biomolecules and water, a knowledge that could be used for drug design. 

“This publication is the first realization of the ideas we have presented in the ERC Advanced Grant. We have proven that a THz calorimetry can be developed“, says RESOLV speaker Martina Havenith. The pan-European funding body ERC (European Research Council) has recently financed the team of Prof Havenith with 2.5 million Euros in five years to develop the new technique. 

The underestimated role of water in biology

Fundamental biological processes like protein folding, protein-protein interactions and enzymatic reactions take place in watery solutions and depend upon the ability of the reacting molecules to recognise themselves in a solvent. Molecular recognition is mediated through various chemical interactions that can be studied by calorimetry, measuring enthalpy (heat transfer), entropy (a measures of disorder for a system) and other associated energetic parameters. 

Unfortunately, current calorimetric approaches are all based on heat transfer, hence they analyse macroscopic changes on time scales of 1 to 100 seconds and can do that only at equilibrium, i.e. when molecules are already bound. However, as Havenith points out, a successful reaction is the result of a dynamic interplay between the partner molecules and the solvent. The Angewandte research now shows that THz-Calorimetry can yield calorimetric data locally and in real time. 

THz laser spectroscopy passes the test

Every solute immersed in water perturbs the H-bonding structure of water molecules in its proximity (the so-called hydration shell), which is therefore different from bulk water. It is known that, depending on the immersed molecule’s size and form, surrounding water molecules could form a water cage with tetrahedral structure, or a more disordered structure with weak hydrogen bonds (called interstitial water).

In the Angewandte paper, the RUB scientists analysed a series of five alcohols (from methanol to tert-butanol) in water. They showed that, upon changing the temperature, THz spectra can be used to infer the changes in the more or less structured hydration water, since the two types leave a distinctive signature on the low frequency spectrum around 200 cm-1. Moreover, these local changes can be directly correlated with thermodynamic data: “The new method allows us for the first time to directly extract from THz spectroscopic data parameters like entropy and enthalpy around solutes, which are crucial to characterize molecular recognition”, says Havenith. 

As a final test, the scientists compared the temperature-dependent changes in heat capacity taken from literature data with the same values deduced by THz-calorimetry data, finding a one-to-one quantitative agreement. A future step of the research will be to apply the novel methodology to processes under non-equilibrium conditions.

Original publication on Angewandte Chemie International Edition  

gss summer school

The Graduate School Solvation Science hosts an annual Summer School at the Ruhr University Bochum. The school always takes place during Whitsuntide and is an integral part of the GSS students' training during their doctoral studies. The fourth GSS Summer School took place from the 6th to the 9th of June, 2017.

International speakers, suggested by the students themselves, are invited to give keynote talks on their research in the field of Solvation Science. The Advanced Laboratory Modules give the students an excellent opportunity to learn new and interesting experimental and theoretical techniques within a specific research topic of their own choice. In 2017 the program of the Summer School comprised a career day, in addition.

Find out more

Publications highlight

T. Schleif, J. Mieres-Perez, S. Henkel, M. Ertelt, W. T. Borden, W. Sander
The Cope Rearrangement of 1,5-Dimethylsemibullvalene-2(4)-d1: Experimental Evidence for Heavy-Atom Tunneling
Angew. Chem. 129 (2017), 10886
DOI: 10.1002/ange.201704787 

K. F. Pfister, S. Baader, M. Baader, S. Berndt, L. J. GoossenBiofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary dieses engines
Science Advances  3 (2017),  e1602624
DOI: 10.1126/sciadv.1602624

C. Schuabb, N. Kumar, S. Pataraia, D. Marx, R. Winter
Pressure modulates the self-cleavage step of the hairpin ribozyme
Nature Communications 8 (2017), 14661
DOI: 10.1038/ncomms14661

 

find out more