Solvation Science alive:

RESOLV News

Posted on
The Bochum-based team has gained new insights into the function of hydrogen-producing enzymes, such as those found in green algae. © RUB, Marquard

New kind of interaction discovered in hydrogen-producing enzymes

PNAS: In hydrogenase enzymes, the transports of protons and electrons have been considered to be separate events until now. However, coupling is the key to success here.

Hydrogenases can convert hydrogen just as efficiently as expensive platinum catalysts. In order to make them usable for biotechnological applications, researchers are deciphering how they work in detail. A team from Ruhr-Universität Bochum and the University of Oxford now reports in the journal “Proceedings of the National Academy of Sciences” (PNAS) that the transfer of protons and electrons by the enzyme takes place spatially separated, but is nevertheless coupled and thus, a decisive factor for efficiency. The article was published online on 10 August 2020.

Most efficient hydrogen producers

The so called class of [FeFe]-hydrogenases, which are for example found in green algae, are nature’s most efficient hydrogen producers. They can both produce and split hydrogen. The actual chemical reaction takes place at the active site buried deep inside the enzyme. “The electrons and protons required for the reaction must therefore find an efficient way to get there,” explains Dr. Oliver Lampret from the Photobiotechnology Research Group in Bochum, one of the authors of the paper. Electron transport takes place via an electric wire, so to speak, consisting of several iron-sulphur clusters. The protons are transported to the active centre via a proton transfer pathway consisting of five amino acids and one water molecule.

“Although it was known that there was a proton-coupled electron transfer mechanism, researchers had so far assumed that the coupling only takes place at the active centre itself,” says Professor Thomas Happe, Head of the Photobiotechnology Research Group.

Protein engineering makes coupling visible

The team manipulated the hydrogenases in such a way that the proton transfer was significantly slower, but hydrogen could still be converted. Using dynamic electrochemistry, they showed that hydrogen conversion decreased significantly and more importantly, significant overpotentials were needed to catalyse the production or splitting of hydrogen. By manipulating the proton transfer pathway, the researchers had indirectly reduced the rate of electron transfer.

“As the two transfer routes are spatially separated, we assume that a cooperative long-range coupling of both processes is necessary for efficient catalysis,” concludes Oliver Lampret. The findings should help to develop more efficient miniaturised hydrogenase catalysts in the future.


Additional information

Detailed Press Release

Original Publication: Oliver Lampret et al.: The roles of long-range proton coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases, in: PNAS, 2020, DOI: 10.1073/pnas.2007090117

 

--------------------------------------

Neue Art von Teamwork in Wasserstoff produzierendem Enzym entdeckt

PNAS: Der Transport von Protonen und der Transport von Elektronen in Hydrogenase-Enzymen wurden bislang getrennt voneinander betrachtet. Dabei ist die Kopplung der Schlüssel zum Erfolg.

Hydrogenasen können Wasserstoff genauso effizient umsetzen wie teure Platinkatalysatoren. Um sie für biotechnologische Anwendungen nutzbar zu machen, entschlüsseln Forscherinnen und Forscher ihre Funktionsweise im Detail. Ein Team der Ruhr-Universität Bochum und University of Oxford berichtet nun in der Zeitschrift „Proceedings of the National Academy of Sciences“, kurz PNAS, dass der Transfer von Protonen und Elektronen durch das Enzym zwar räumlich getrennt stattfindet, aber dennoch gekoppelt und für die Effizienz entscheidend ist. Der Artikel ist am 10. August 2020 online erschienen.

Effizienteste Wasserstoffproduzenten

Die sogenannten [FeFe]-Hydrogenasen, die zum Beispiel in Grünalgen vorkommen, sind die effizientesten Wasserstoffproduzenten der Natur. Sie können sowohl Wasserstoff katalytisch herstellen als auch Wasserstoff spalten. Die eigentliche chemische Reaktion findet am aktiven Zentrum tief im Inneren des Enzyms statt. „Die für die Reaktion erforderlichen Elektronen und Protonen müssen also einen effizienten Weg dorthin finden“, erklärt Dr. Oliver Lampret aus der Bochumer Arbeitgruppe Photobiotechnologie, Erstautor des Papers. Der Elektronentransport erfolgt dabei sozusagen über einen elektrischen Draht, der aus mehreren Eisen-Schwefel-Clustern besteht. Die Protonen werden über einen Protonentransferpfad, bestehend aus fünf Aminosäuren und einem Wassermolekül, zum aktiven Zentrum befördert.

„Es war zwar bekannt, dass es einen Protonen-gekoppelten Elektronentransfer-Mechanismus gibt, aber bislang hatten Forscher angenommen, dass die Kopplung erst am aktiven Zentrum selbst stattfindet“, sagt Prof. Dr. Thomas Happe, Leiter der Arbeitsgruppe Photobiotechnologie.

Protein Engineering macht Kopplung sichtbar

Das Team manipulierte die Hydrogenasen so, dass der Protonentransfer deutlich langsamer wurde, aber immer noch Wasserstoff umgesetzt werden konnte. Mit dynamischer Elektrochemie zeigten sie, dass der Wasserstoffumsatz dadurch deutlich abnahm und außerdem Überspannungen nötig waren, um die Produktion oder Zerlegung von Wasserstoff zu katalysieren. Durch Manipulation des Protonentransferpfades hatten die Forscherinnen und Forscher indirekt die Rate des Elektrontransfers vermindert.

„Da die zwei Transferwege räumlich voneinander getrennt sind, gehen wir davon aus, dass eine kooperative Langstreckenkopplung beider Prozesse für eine effiziente Katalyse nötig ist“, resümiert Oliver Lampret. Die Erkenntnisse sollen dazu beitragen, in Zukunft effizientere miniaturisierte Hydrogenasen-Katalysatoren zu entwickeln.


Zusätzliche Information

Ausführliche Presseinformation

Original Publication: Oliver Lampret et al.: The roles of long-range proton coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases, in: PNAS, 2020, DOI: 10.1073/pnas.2007090117

 

Leading actor: the solvent

Solvation Science and RESOLV featured in magazine Chemie in unserer Zeit

Learn more