Solvation Science alive:

RESOLV News

Posted on
Together with their research partners, the team at the Center for Electrochemistry is working on the development of new catalysts. © RUB, Marquard

Making enzymes fit for industrial applications

Ang.Chem.: Bacterial enzymes are often powerful but also very sensitive catalysts. To call up their performance, they therefore need a special environment.

Researchers at Ruhr-Universität Bochum (RUB) have developed new techniques for efficiently coupling bacterial enzymes to electrodes. Together with a team from the University of Utah, they realised a system for ammonia synthesis based on a nitrogenase enzyme. They also designed a hydrogen/oxygen biofuel cell based on a hydrogenase enzyme together with a team from the Max Planck Institute for Chemical Energy Conversion. Both papers have been published in the journal “Angewandte Chemie” in May and June 2020.

Powerful enzymes require special conditions

Many enzymes that occur in nature are powerful catalysts, such as the so-called [FeFe]-hydrogenases. Hydrogenases are used by bacteria to produce hydrogen, while nitrogenases succeed in activating the strongest bond in nature in nitrogen (N2). Both enzymes are highly sensitive to oxygen, but use readily available non-precious metals in their active centres. Thus they could one day replace expensive precious metal catalysts. “To use such highly sensitive catalysts for biofuel cells is still one of the biggest challenges in sustainable energy conversion,” says Professor Wolfgang Schuhmann, head of the RUB Centre for Electrochemistry and member of the cluster of excellence “Ruhr Explores Solvation”, Resolv.

Biofuel cell realized with enzyme

In cooperation with the team of Professor Wolfgang Lubitz from the Max Planck Institute for Chemical Energy Conversion in Mülheim an der Ruhr, the Bochum group showed under which circumstances this is nevertheless possible. They used a so-called [FeFe] hydrogenase from the bacterium Desulfovibrio desulfuricans. Although this is a very efficient catalyst, it must be protected in the fuel cell from the oxygen required for operation at the second electrode.

In this work, the scientists integrated the [FeFe]-hydrogenase for the first time into a biofuel cell operated with so-called gas diffusion electrodes. In this cell, hydrogen and oxygen are transported to the enzymes through a membrane. The team embedded the enzyme in a matrix consisting of a so-called redox polymer, which fixes the enzyme to the gas-permeable electrode surface, protects the enzyme from the harmful effects of oxygen and also establishes electrical contact between the enzyme and the electrode. With this design, the fuel cell achieved previously unattained high current densities of 14 milliamperes per square centimetre and high power densities of 5.4 milliwatts per square centimetre.

Biobased process for ammonia production

In the second project, the research team at RUB, together with the US group led by Professor Shelley Minteer from the University of Salt-Lake City, looked for a bioelectrosynthetic alternative for ammonia synthesis. In the chemical industry, ammonia is commonly produced using the Haber-Bosch process at high temperature and high pressure and with a considerable release of CO2.

Some bacteria possess enzymes, called nitrogenases, with which they fix molecular nitrogen (N2) and can metabolise it at room temperature and without increased pressure. However, in living organisms this consumes a lot of energy in the form of the energy storage molecules ATP.

The research team showed that it is possible to couple the nitrogenase from the bacterium Azotobacter vinelandii with an electrode through which the necessary electrons for the reaction can be supplied, so that no ATP is required. Once again, the key to success was a redox polymer that helped to establish a stable and efficient electrical contact between the electrode and the nitrogenase/redox polymer composite. “To our knowledge, the fixation and contacting of nitrogenases in redox polymers is the first step in making nitrogenases applicable for bioelectrosynthesis,” write the authors of the study.

additional information

Detailed Press Release

Original Publication: Julian Szczesny, James A. Birrell, Felipe Conzuelo, Wolfgang Lubitz, Adrian Ruff, Wolfgang Schuhmann: Redox‐polymer‐based high‐current‐density gas‐diffusion H2‐oxidation bioanode using [FeFe] hydrogenase from Desulfovibrio desulfuricans in a membrane‐free biofuel cell, in: Angewandte Chemie International Edition, 2020, DOI: 10.1002/anie.202006824

Original Publication: Yoo Seok Lee, Adrian Ruff, Rong Cai, Koun Lim, Wolfgang Schuhmann, Shelley D. Minteer: Electroenzymatic nitrogen fixation using a MoFe protein system immobilized in an organic redox polymer, in: Angewandte Chemie International Edition, 2020, DOI: 10.1002/anie.202006824

 

------------------------------------------

Enzyme für industrielle Anwendungen fit machen

Ang.Chem.: Bakterielle Enzyme sind oft leistungsfähige, aber auch sehr empfindliche Katalysatoren. Um ihre Leistung abzurufen, brauchen sie daher eine besondere Umgebung.

Neue Techniken, mit denen sich bakterielle Enzyme effizient an Elektroden koppeln lassen, haben Forscherinnen und Forscher der Ruhr-Universität Bochum (RUB) entwickelt. Zusammen mit einem Team von der University of Utah realisierten sie basierend auf einem Nitrogenase-Enzym ein System für die Ammoniaksynthese. Außerdem konzipierten sie aufbauend auf einem Hydrogenase-Enzym, gemeinsam mit einem Team vom Max-Planck-Institut für Chemische Energiekonversion, eine Wasserstoff-Sauerstoff-Biobrennstoffzelle. Beide Arbeiten sind in der Zeitschrift „Angewandte Chemie“ veröffentlicht, erschienen im Mai und Juni 2020.

Leistungsfähige Enzyme benötigen besondere Bedingungen

Viele Enzyme, die in der Natur vorkommen, sind leistungsfähige Katalysatoren, etwa die sogenannten [FeFe]-Hydrogenasen, mit deren Hilfe Bakterien Wasserstoff produzieren, oder Nitrogenasen, denen es gelingt die stärkste Bindung in der Natur im Stickstoff zu aktivieren. Beide Enzyme sind hochempfindlich gegenüber Sauerstoff, nutzen aber gut verfügbare Nichtedelmetalle in ihren aktiven Zentren. So könnten sie eines Tages teure Edelmetallkatalysatoren ersetzen. „Solche hochempfindlichen Katalysatoren für Biobrennstoffzellen zu nutzen ist nach wie vor eine der größten Herausforderungen bei der nachhaltigen Energieumwandlung“, sagt Prof. Dr. Wolfgang Schuhmann, Leiter des RUB-Zentrums für Elektrochemie und Mitglied im Exzellenzcluster Ruhr Explores Solvation, Resolv.

Biobrennstoffzelle mit Enzym realisiert

In Kooperation mit dem Team um Prof. Dr. Wolfgang Lubitz vom Max-Planck-Institut für Chemische Energiekonversion in Mülheim an der Ruhr zeigte die Bochumer Gruppe, unter welchen Umständen das dennoch möglich ist. Sie nutzten eine sogenannte [FeFe]-Hydrogenase aus dem Bakterium Desulfovibrio desulfuricans. Diese ist zwar ein sehr effizienter Katalysator, muss aber in der Brennstoffzelle vor dem Sauerstoff geschützt werden, der an der zweiten Elektrode zum Betrieb benötigt wird.

In der vorliegenden Arbeit integrierten die Wissenschaftlerinnen und Wissenschaftler die [FeFe]-Hydrogenase erstmals in eine mit sogenannten Gasdiffusionselektroden betriebene Biobrennstoffzelle. In dieser werden der Wasserstoff und der Sauerstoff durch eine Membran zu den Enzymen geleitet. Das Team bettete das Enzym in eine Matrix aus einem sogenannten Redoxpolymer ein, welches das Enzym auf der gasdurchlässigen Elektrodenoberfläche fixiert; gleichzeitig schützt es vor den schädlichen Einflüssen von Sauerstoff und stellt zudem elektrischen Kontakt zwischen Enzym und Elektrode her. Mit diesem Aufbau erreichte die Brennstoffzelle bisher nicht erreichte hohe Stromdichten von 14 Milliampere pro Quadratzentimeter und hohe Leistungsdichten von 5,4 Milliwatt pro Quadratzentimeter.

Biobasiertes Verfahren für die Ammoniakproduktion

In der zweiten Arbeit suchten die Bochumer Wissenschaftlerinnen und Wissenschaftler gemeinsam mit der US-amerikanischen Gruppe um Prof. Shelley Minteer von der Universität in Salt-Lake City nach einer bioelektrosynthetischen Alternative für die Ammoniaksynthese. In der chemischen Industrie wird Ammoniak standardmäßig mit dem Haber-Bosch-Verfahren bei hoher Temperatur und hohem Druck und mit einer erheblichen CO2-Freisetzung hergestellt.

Manche Bakterien besitzen Enzyme, Nitrogenasen genannt, mit denen sie molekularen Stickstoff (N2) fixieren und bei Raumtemperatur und ohne erhöhten Druck verstoffwechseln können. In lebenden Organismen verbraucht das jedoch viel Energie in Form der Energiespeichermoleküle ATP.

Das Forschungsteam zeigte, dass es möglich ist, die Nitrogenase aus dem Bakterium Azotobacter vinelandii mit einer Elektrode zu koppeln, über die die erforderlichen Elektronen für die Reaktion zugeliefert werden können, sodass kein ATP benötigt wird. Schlüssel zum Erfolg war einmal mehr ein Redoxpolymer, mit dessen Hilfe ein stabiler und effizienter elektrischer Kontakt zwischen der Elektrode und dem Nitrogenase-Redoxpolymer-Verbund herstellt werden konnte. „Unseres Wissens nach sind die Fixierung und Kontaktierung von Nitrogenasen in Redoxpolymeren der erste Schritt, um Nitrogenasen für die Bioelektrosynthese anwendbar zu machen“, schreiben die Autorinnen und Autoren der Studie.

zusätzliche informationen

Ausführliche Presseinformation

Originalveröffentlichung: Julian Szczesny, James A. Birrell, Felipe Conzuelo, Wolfgang Lubitz, Adrian Ruff, Wolfgang Schuhmann: Redox‐polymer‐based high‐current‐density gas‐diffusion H2‐oxidation bioanode using [FeFe] hydrogenase from Desulfovibrio desulfuricans in a membrane‐free biofuel cell, in: Angewandte Chemie International Edition, 2020, DOI: 10.1002/anie.202006824

Originalveröffentlichung: Yoo Seok Lee, Adrian Ruff, Rong Cai, Koun Lim, Wolfgang Schuhmann, Shelley D. Minteer: Electroenzymatic nitrogen fixation using a MoFe protein system immobilized in an organic redox polymer, in: Angewandte Chemie International Edition, 2020, DOI: 10.1002/anie.202007198

 

 

Leading actor: the solvent

Solvation Science and RESOLV featured in magazine Chemie in unsere Zeit

Learn more